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Abstract Understanding the characteristics of historical droughts will benefit water resource
managers because it will reveal the possible impacts that future changes in climate may have on
drought, and subsequently, the availability of water resources. The goal of this study was to
reconstruct historical drought occurrences and assess future drought risk for the drought-prone
Blue River Basin in Oklahoma, under a likely changing climate using three types of drought
indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI) and
Standardized Runoff Index (SRI). No similar research has been conducted in this region
previously. Monthly precipitation and temperature data from the observational period 1950—
1999 and over the projection period 2010-2099 from 16 statistically downscaled Global
Climate Models (GCM) were used to compute the duration, severity, and extent of
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meteorological droughts. Additionally, soil moisture, evapotranspiration (ET), and runoff data
from the well-calibrated Thornthwaite Monthly Water Balance Model were used to examine
drought from a hydrological perspective. The results show that the three indices captured the
historical droughts for the past 50 years and suggest that more severe droughts of wider extent
are very likely to occur over the next 90 years in the Blue River Basin, especially in the later part
of the 21st century. In fact, all three indices display lower minimum values than those ever
recorded in the past 50 years. This study also found that SRI and SPI (PDSI) had a correlation
coefficient of 0.81 (0.78) with a 2-month (no appreciable) lag time over the 1950-2099 time
period across the basin. There was relatively lower correlation between SPI and PDSI over the
same period. Although this study recommends that PDSI and SRI are the most suitable indices
for assessing future drought risks under an increasingly warmer climate, more drought indices
from ecological and socioeconomic perspectives should be investigated and compared to
provide a complete picture of drought and its potential impacts on the dynamically coupled
nature-human system.

Keywords Blue River Basin - Drought index - Climate change - GCMs

1 Introduction

The Earth’s average temperature is gradually increasing according to studies in the last
30 years (Pinol et al. 1998; Karl et al. 2009). Global Climate Models (GCMs) continue
to show a significant increasing trend of Earth’s average temperature over the next
90 years (Karl et al. 2009). Studies on climate change impacts have consequently
become not only scientifically valuable, but also economically and socially necessary
(Nordhaus 1994).

Drought is a common, widespread, and recurring climate-related hazard (Namias 1966). It
occurs virtually in all climate zones and impacts the local ecological and social environment
(Riebsame et al. 1991; Wang et al. 2003). Many drought events have been observed and recorded
in human history (Stine 1994; Woodhouse and Overpeck 1998; Kim et al. 2002; Cook et al.
2004; Raziei et al. 2009; Yong et al. 2010). Among them, some events were so severe that local
water resources were depleted and civilizations were forced out of their original settlements (Qin
2011). Predicting when and where a drought might happen and how severe it will become is very
crucial for the sustained development of a society.

Drought is usually defined on the basis of the degree of dryness and the duration of the dry
period (Palmer 1965). Landsberg (1982) considered drought to be a deficiency of precipitation
over an extended period of time, which might result in a water shortage for some activity, group,
or environmental sector. Scientists have developed four classifications to describe drought
because it is such a complex phenomenon: meteorological drought, agricultural drought,
hydrological drought, and socio-economic drought (Wilhite and Glantz 1985).

Meteorological drought is simply the departure from normal of meteorological variables that
induces drying of the surface. It is region-specific since the atmospheric conditions of different
areas have high local variability in space and time (National Drought Mitigation Center 20006).
Agricultural drought indicates whether the water quantity in soil can meet the demand of plants
at various growing stages. It occurs when the soil moisture fails to provide enough nourishment
to the plants. Hydrological drought, which is initially caused by rainfall deficits, is normally
associated with reservoirs or lake levels within a basin (Rathore 2004). It is important to note
that the hydrological responses normally are latent to precipitation deficiencies in a basin.
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Therefore, not all meteorological droughts will immediately trigger a hydrological drought
because reservoir levels remain fairly constant over a short period of time. Socio-economic
drought is different from the aforementioned types of droughts because it is a measure of the
gap between supply and demand. If the water supply cannot meet the demand of water
consumption such as hydroelectric power, food production, and fishery activities etc., a
socio-economic drought will occur due to the demand—supply unbalance (National Drought
Mitigation Center 2006).

Understanding the characteristics of historical droughts will benefit water resource
managers because it will provide insight into the possible impacts of future climate
changes (Edwards and McKee 1997). However, drought is difficult to quantify due to
its dependence on different geographic regions, needs, and disciplinary perspectives
(McKee et al. 1993). Various drought indices have been developed over the past few
decades to assimilate thousands of bits of data on rainfall, snowpack, streamflow, and
other water supply indicators into a comprehensible big picture (Heim 2002; Well et
al. 2004; Jain et al. 2010). These drought indices were developed for different
purposes. For example, the Standardized Precipitation Index (SPI) (McKee et al.
1993) was developed to indicate drought by analyzing precipitation variability. The
Palmer Drought Severity Index (PDSI) (Palmer 1965) intended to provide more
comprehensive information by taking into account more meteorological and hydrolog-
ical components. Some newly developed indices such as the Reconnaissance Drought
Index (RDI) (Tsakiris et al. 2007; Tsakiris 2008), was proposed to eliminate the
shortcoming of SPI which does not account for evapotranspiration. The Standardized
Precipitation Index (SPI), the most widely used drought index, and the Palmer
Drought Severity Index (PDSI) are used in this study. A newly developed index
called Standardized Runoff Index (SRI) (Vasiliades et al. 2011) was also used because
it provides a hydrological drought assessment, a perspective that is inadequately
assessed by SPI and PDSI.

The Blue River is particularly important to the state of Oklahoma and local surrounding
communities. Historically, several Native American tribal communities have used the river
as their important water source. Recently however, there have been increasingly competing
demands from surrounding industrial and metropolitan areas located in Oklahoma and Texas
(OWRB 2003). Although research on droughts in the southern U.S. using different drought
indices has been conducted over the past few years (Wan et al. 2004; Narasimhan and
Srinivasan 2005), studies that focus on the Blue River Basin have not been conducted.. This
work is the first study that uses multiple indices to assess historical and future drought in the
basin.

The goal of this study was to reconstruct historical drought occurrences and assess future
drought risk (intensity, duration, and extent) for the drought-prone Blue River Basin in
Oklahoma, under a changing climate. The first objective of this study was to construct the
past drought conditions and predict future drought scenarios for the Blue River Basin using
three types of drought indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought
Severity Index (PDSI) and Standardized Runoff Index (SRI), ranging from a meteorological
drought index, a hydro-meteorological index to a hydrological index. The second objective
was to examine the relationships among the three indices. The third objective was to find the
most suitable drought index for the Blue River Basin under a changing climate. Detailed
discussions of the three indices and the hydrological model are included in Section 2.
Section 3 presents the results and discussion. The summary and the conclusions are
presented in Section 4.
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2 Study Region, Data, Model and Drought Indices
2.1 Study Region

The Blue River Basin is located in Southeastern Oklahoma with a drainage area of 1751 km?
(Fig. 1), a relatively small basin that has experienced several severe droughts (1909-18,
193040 (the Dust Bowl), 1952-56, and 1962—72) over the past century.

2.2 Climate Data

Climate data of the study region were extracted and modeled for SPI, PDSI and SRI
calculations. For this study, the observational data used were the gridded National
Climatic Data Center (NCDC) Cooperative Observer station data, described by Maurer
et al. (2002). The observational surface temperature (°C) and monthly precipitation
(mm/day) data cover the time period from 1950 to 1999 in a monthly time step. . The
data domain covers the continental U.S. and portions of southern Canada and northern
Mexico at a 1/8 ° (~12 km) resolution. Projection data are archived from the World
Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project
phase3 (CMIP3) multi-model dataset (Table 1). CMIP3 contains temperature and
precipitation projections under three CO, emission scenarios (namely A2, A1B and
B1) for the period of 2010-2099 and these data share the same resolution and
coverage with the NCDC observation data.
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Fig. 1 The study area: Blue River Basin in Oklahoma. The triangle dots are GCM grid points
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Table 1 Global Climate Models used in WCRP CMIP3 data

GCM Ensemble

Modeling Group, Country WCRP Primary
CMIP3 I.D. Reference
Bjerknes Centre for Climate Research BCCR-BCM2.0 Furevik et al., 2003
Canadian Centre for Climate Modeling & Analysis CGCM3.1 (T47) Flato and Boer, 2001
Meteo-France/Centre National de Recherches CNRM-CM3 Salas-Melia et al., 2005
Meteorologiques, France
CSIRO Atmospheric Research, Australia CSIRO-MK3.0 Gordon et al., 2002
US Dept. of Commerce/NOAA/Geophysical Fluid GFDL-CM2.0 Delworth et al., 2006
Dynamics Laboratory, USA
US Dept. of Commerce/NOAA/Geophysical GFDL-CM2.1 Delworth et al., 2006
Fluid Dynamics Laboratory, USA
NASA/Goddard Institute for Space Studies, USA GISS-ER Russell et al., 2000
Institute for Numerical Mathematics, Russia INM-CM3.0 Diansky and Volodin,
2002
Institut Pierre Simon Laplace, France IPSL-CM4 IPSL, 2005
Center for Climate System Research (The University of Tokyo), MIROC3.2 K-1 model developers,
National Institute for Environmental Studies, and Frontier (medres) 2004
Research Center for Global Change (JAMSTEC), Japan
Meteorological Institute of the University of Bonn, ECHO-G Legutke and Voss,
Meteorological Research Institute of KMA 1999
Max Planck Institute for Meteorology, Germany ECHAMS/ Jungclaus et al., 2006
MPI-OM
Meteorological Research Institute, Japan MRICGCM2.3.2 Yukimoto et al., 2001
National Center for Atmospheric Research, USA CCSM3 Collins et al., 2006
National Center for Atmospheric Research, USA PCM Washington et al., 2000
Hadley Centre for Climate Prediction and Research/ UKMO- Gordon et al., 2000
Met Office, UK HadCM3

The two scenarios of the 21st century for future greenhouse gas emissions used in this
study were A2 and A1B as defined in the IPCC Special Report on Emissions Scenarios
(IPCC 2007). According to IPCC (2007), scenario A2 is a higher emission path and
describes a higher population world where technological change and economic growth
are more fragmented and slower. Scenario A1B is a middle emission path known as
business-as-usual and describes a balanced world where people do not rely too heavily
on any one particular energy source.

2.3 Thornthwaite Monthly Water Balance Model

The hydrological model used to simulate the hydrologic process and generate runoff output for
SRI calculation is the Thornthwaite Monthly Water Balance Model (Fig. 2) driven by a
graphical user interface. It is named after C.W. Thornthwaite who used water budget in climate
classification (Thornthwaite 1948). An updated description is given by McCabe and Markstrom
(2007). Input for this model is monthly temperature and precipitation. Outputs from the model
include potential evapotranspiration (PET), soil moisture, actual evapotranspiration (AET),
snow storage, surplus, and runoff total.
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Fig. 2 The framework of Thornthwaite Monthly Water Balance Model (Credit: U. S. Geological Survey/
figure by McCabe and Markstrom 2007)

2.4 Drought Indices
2.4.1 SPI

Standardized Precipitation Index (SPI) is an indicator of meteorological drought,
which is mainly caused by a deficiency of precipitation. McKee et al. (1993) tested
this index on Fort Collins, CO observed precipitation data and calculated SPI for 3, 6,
12, 24, and 48-month time scales. SPI has a very straight-forward classification of
different drought severities. When SPI is below —1.5, the drought condition is
considered severe; when it reaches below —2 it is considered extreme. SPI is a
probability based index, so the heaviness or lowness of a precipitation event in the
SPI is relative to the rainfall characteristics of that area. A long-term precipitation
record is needed in order to calculate SPI. Data from the long-term record are first
fitted by a Gamma probability distribution, G(x), (McKee et al. 1993).

G(x) = % /OX et dr (1)

Since the gamma function in undefined for x=0 and a precipitation distribution may
contain zero values, the cumulative probability H(x) becomes:

H(x) =g+ (1 - q)G(x) (2)

where q is the probability of a zero. This distribution is then transformed into a standard
normal distribution so that the mean SPI for the specific location becomes zero.
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Co +c1t+czt2 .
Z=8SPl=—|t— 0<H(x) <05 3
( 1+d1t+d2t2+d3t3> for () = 3)
Co+61t+62t2 .
Z = SPI = t— 0.5<H(x)<1.0 4
+< l+d1t+d2t2+d3t3) Jor (x) < ()

Where

t= ln<(1.01H(x))2> Jor 0.5 < H(x) < 1.0

co =2.515517
c; = 0.802853
c; =0.010328
d; = 1.432788
d, =0.189269
d; =0.001308

After the statistical fitting and transformation, region specific deviations are largely
minimized.

Although SPI is fairly easy to calculate compared to the other indices (Alley 1984), it is
very effective in providing early drought warning and drought damage control. However, the
disadvantage of SPI is that it only considers one climate variable, precipitation, and not
evapotranspiration or soil moisture, which are essential parameters in hydrological process.
Therefore, comprehensive indices that involve more complex natural hydrological process
should also be examined.

2.4.2 PDSI

Palmer Drought Severity Index is an indicator of hydro-meteorological drought that has
been used for the last 45 years. Instead of taking only precipitation into account, PDSI also
accounts for temperature which has a huge impact on evapotranspiration and soil moisture.
This index provides a more comprehensive method to assess the impacts of climate change
on drought since it requires more climate variables as input (Palmer 1965; Alley 1984;
Guttman 1998).

PDSI is an indicator of prolonged soil moisture deficiency (Palmer 1965). While it
estimates soil moisture using a simple two layer soil description, it has been shown to be
strongly correlated (»=0.5-0.7) with measured soil moisture (Dai et al. 2004). The PDSI soil
parameter used for a bucket water balance is the Available Water Content (AWC). AWC is
the difference between the soil moisture at field capacity and the wilting point. For this study,
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AWC was determined from the State Soil Geographic Database (STATSGO) for the top 100 cm
of the soil profile. The STATSGO soil database has a spatial resolution of 1 km. The deficit in
soil moisture, d;, measures the difference between observed precipitation and the required
precipitation to maintain the long term monthly soil moisture (Well et al. 2004). The software
package provided by the University of Nebraska (http://greenleaf.unl.edu/downloads/) calcu-
lated the PDSI on a monthly time step.

d;=P —P =P — (aPE + PR + yPRO + 5PL) (5)

PE Potential evapotranspiration

PR Potential recharge - the amount of moisture required to bring the soil to field capacity

PL Potential loss - the amount of moisture that could be lost from the soil to evapo-
transpiration provided precipitation during the period was zero

PRO Potential runoff PRO - the difference between the potential precipitation and the PR

The next step in the procedure is the climate characteristic value K. K helps standardize
the index across varying climates.

E[PE]+E[R+E[RO)
17.6 e 4 2.8
K, = (1.5 log, [ EIPIHELL]

S DK £10)

i=1

+ o.s) (6)

The climate characteristic, K, and deficit, d, are then combined to form the moisture
anomaly index, Z. This indicator is

Z=Kd (7)

Finally, PDSI is computed using Eq. (8)
PDSI; = 0.897PDSI;_ + 1/3Z; (8)
PDSI has different classification from that of SPI. When PDSI is below —3, the drought
condition is considered severe; when it is below —4, the drought condition is considered extreme.

2.4.3 SRI

Standardized Runoff Index (SRI) appeared in Vasiliades et al. (2011) as Water Balance
Derived Drought Index. Input for this index is monthly streamflow data. Vasiliades et al.
(2011) fitted monthly streamflow data into to Pearson type III distribution and transformed it
using Box-Cox transformation (Box and Cox 1964) to remove skewness.

Xt -1

Y =In(X),A=0 (10)

Where X are the values of the original time series of surface runoff, Y are the values of the
transformed time series, A is a parameter for which the values of the transformed time series
(Y) are normally distributed.
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The transformed streamflow values are then standardized to translate into a standardized
runoff index known as Zyg;. SRI has the same classification with that of SPI; therefore the
region-specific deviation is minimized since it is transformed to be standardized. SRI is
fairly new compared to SPI and PDSI, so the fundamental idea of using SRI is to examine
drought from a hydrological perspective and compare it with the traditional drought indices,
namely SPI and PDSI.

3 Results and Discussion
3.1 The Past and Projected Future Climate of the Blue River Basin

The simulated outputs of temperature and precipitation from the 16 GCMs have been
validated against the observations for the six-state SCIPP region of Southern US (Liu et
al. 2012). Statistics show that the differences between the simulated and the observed are not
discernable. Therefore, the projections can be used more confidently to support statements
on projected changes in mean-annual temperature over a given region (Maurer et al. 2007).

The past 50 years of climate of the Blue River Basin was relatively warm and wet.
Average temperatures ranged from 5 °C (41 °F) in the winter to about 28 °C (82 °F) in the
summer. There was strong seasonality in precipitation. January, on average, received the
least precipitation at around 50 mm (~2 in). May was the wettest month averaging over
140 mm (~5.5 in). July and August were fairly dry, and there was a secondary peak in
precipitation during September. Annually, the basin averages about 1040 mm (41 in). In
terms of temperature projection, air temperature over the basin is expected to warm by 2.0—
4.8 °C by the end of the 21° century according to three different CO, emission scenarios
(Fig. 3). The temperature increase will increase evapotranspiration in the basin, thus less
water will be available if the basin does not receive enough recharge from the atmosphere or
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Fig. 3 Temperature change projection over the basin based on 1950-1999 mean under A2, A1B and Bl
scenarios. The light lines are each individual members in the 16 GCMs. The bold lines are the ensemble means
from 16 GCMs
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underground. The precipitation anomaly time series is different however. There were no
statistically significant trends in precipitation for any scenario when looking at each ensemble
mean. This is due to trends averaging out when considering larger areas (Fig. 4). The Blue River
Basin annual precipitation anomaly trends were +43 mm/century for B1, -14 mm/century for
A1B, and —33 mm/century for A2. However, these are still not large relative changes. A 43 mm
ofincrease is approximately a 4 % change compared to the average rainfall. The average annual
precipitation amount might not change much but if the distribution changes it could have big
implications for water resources and agriculture.

3.2 Rainfall-Runoff Model Calibration

Thornthwaite Monthly Water Balance Model is calibrated in order to generate confident
future runoff under the A1B scenario. To calibrate the mode, input data of monthly
temperature and precipitation for the Blue River Basin were retrieved from NCDC. The
parameters were manually adjusted to generate the best agreement between observed and
modeled runoff for the period June 1936 through August 2006 (Fig. 5). Statistical analysis
was done to determine the performance of the model. The best agreement was obtained with
the Nash-Sutcliffe coefficient of efficiency being 0.78 and a root mean square error of
12.9 mm/month. Assuming the parameters remain unchanged in the future scenarios, the
well calibrated model was used to project future runoff given the projected temperature and
precipitation.

3.3 Past and Future Drought

The Blue River Basin is located within the state of Oklahoma. Historical records show that
Oklahoma experienced four major droughts in the 20th century: 1909-18, 1930-40 (the
Dust Bowl), 1952-56, and 1962—72. According to Oklahoma Climatological Survey (OCS),
while the drought of the 1930s is historically associated with the Dust Bowl of the Great

60 T T T T T T
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Precipitation Anomaly (mm/mon)

——pr i
y

Observation Period

Projection Period

1 1 1 1 1
9 2010 2030 2050 2070 2090 2099
Year

g I

$so 1970 1990 1

Fig. 4 Precipitation change projection over the basin based on 1950-1999 mean under A2, A1B and Bl
scenarios. The light lines are each individual members in the 16 GCMs. The bold lines are the ensembles
means from 16 GCMs
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Fig. 5 Runoff calibration based on Thornthwaite Monthly Water Balance Model at Blue River Basin outlet

Plains, statistics show that the drought of the 1950s was more severe for Oklahoma as
indicated by record low SPI and PDSI values (Arndt 2002). However, socio-economic
impacts were less severe as Oklahoma’s population learned to cope with the Dust Bowl
and developed agricultural and water management practices that mitigated many of the worst
impacts of the Dust Bowl. As can be seen from Fig. 6a panel 1, 12-month SPI shows
extreme droughts from the beginning of 1950s to the end of the 1960s. The 1950s droughts
were characterized by short periods of intense precipitation deficits and high temperatures
interspersed with near-normal or above-normal precipitation. As shown in the figure, there
was a long duration extreme drought between 1960 and 1965. This drought lasted almost
5 years without being interrupted by occasional wet spells. The drought intensity decreased
due to above average rainfall in 1965 but another period extreme drought took hold near the
end of 1960s. Other than the other mega drought near 1980, the Blue River Basin also
experienced some dry spells and some wet spells after 1980.

PDSI provides a somewhat different account of Blue River Basin drought history
(Fig. 6a). The 1950s and 1960s drought were roughly captured, but the onset and severity
were slightly different than SPI. PDSI does not show the late-1970s drought that was
accounted for by SPI. Additionally, PDSI shows that the Blue River Basin was mostly
under wet conditions after 1980 except for one severe drought around 1981. This may be an
artifact of the relatively cooler temperatures in the 1960s and 1970s relative to the 1950s,
which lowered ET and consequently PDSI.

SRI, in this case, was very similar to SPI in terms of severity and timing of droughts.
Figure 6b shows SRI has a 2 month lag time from SPI (CC reaches highest value of 0.81),
indicating that the hydrological droughts for this period were not recognized until 2 months
after the meteorological drought set in (Table 2). Although the wet spells appear more
significant on the SRI panel, SRI successfully captures all the major droughts except the one
in mid 1980s. In general, droughts shown on SRI mostly have a shorter duration than the
same ones shown on SPI, and wet periods are longer than those on the SPI panel. RDI was
also calculated and showed similar trends and patterns to SRI for the past and future.

For drought projections using SPI, ensemble mean monthly precipitation should not be
used because the averaging process diminishes the monthly variation of precipitation which
could generate misleading outputs. Therefore, one of the 16 GCMs — GISS-ER is selected,
because the GISS-ER simulation matched the 1950-1999 observational periods with the
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Fig. 6 (a) Historical time series variation of SPI, PDSI and SRI (b) Scatter plot of SPI vs. SRI and the linear
regression line

most similarities from a statistical point of view (Liu et al. 2012). Hence, SPI-based drought
projections are more accurate using the GISS-ER model.

Table 2 Correlation coefficient between drought indices for different lag times

Time scale Lag time

0 month 1 month 2 month 3 month 4 month 5 month

1950-1999  SPI vs. SRI 12 month 0.81 0.88 0.89 0.87 0.83 0.77
20102099 SRIvs. PDSI 12 month 0.78 0.23 0.23 0.23 0.24 0.23

@ Springer



Hydro-Climatological Drought Analyses and Projections in BRB, OK 2773

Differences exist among the three indices for projections of drought conditions in Blue
River Basin (Fig. 7a). SPI indicates one minor drought in the early 2020s, and the frequency
and intensity of drought appear to increase substantially after 2050. PDSI and SRI show
similar results and project many more droughts after 2050 The PDSI and SRI time series has
a correlation coefficient of 0.78 (Fig. 7b) and they do not exhibit any time lag from one
another (Table 2) (CC reaches its highest value at 0 month lag time). More drought events
are displayed on the PDSI panel than on the SRI panel, and severe droughts on PDSI are
projected to be more severe (PDSI<—5) than those on SRI, except for the early 2080s.

The Blue River Basin is projected to be nearly constantly under wet conditions before
2050 for both PDSI and SRI, with a slight decreasing trend of wetness from 2011 to 2050. It
is not surprising to see that both PDSI and SRI demonstrate more severe and frequent
drought after 2050, although the magnitude and timing of droughts are not exactly the same.
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Fig. 7 (a) Projected time series variation of SPI, PDSI and SRI (b) Scatter plot of PDSI vs. SRI and the linear
regression line
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Based on the Thorthwaite Monthly Water Balance Model projection, the Blue River Basin is
expected to have an increasing trend of ET and decreasing trend in total runoff under A1B
scenario. Actual ET is expected to increase by up to 8 % on average and runoff is projected
to decrease by more than 10 % by the end of the 21*" century (Fig. 8). Accordingly, more
water is going out as ET and less water will be available for surface runoff.

SPI, PDSI and SRI perspectives show that future droughts are likely to become more
severe and frequent beginning in the late 2050s. Table 3 summarizes the minimum values of
drought indices found in both historical and projection periods. In the past 50 years, the
lowest value ever shown on SPI was —2.6, which indicates an extreme drought event;
however, in the next 90 years SPI is projected to have values as low as —3.9, which indicates
a much more extreme drought condition. PDSI and SRI also project more severe droughts in
the future compared to the past 50 years (minimum value of —6 for PDSI and —3 for SRI).
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Fig. 8 (a) 10 years moving average of projected AET change as percentage of 1950-1999 mean (b) 10 years
moving average of projected runoff change as percentage of 1950-1999 mean
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Table 3 Minimum values in SPI,

PDSI and SRI time series Drought Index Minimum Value
1950-1999 2010-2099
SPI -2.6 -39
PDSI —4.1 —6
SRI —2.1 -3

Table 4 summarizes the number of drought events with different return periods indicated
by the three indices. SPI and SRI follow standard normal distribution, so the thresholds for
different return periods should remain the same in the future. Note that PDSI follows a
Generalized Extreme Value (GEV) distribution, and the thresholds for different return
periods in the future are found to be greatly decreased compared to the period of 1950
through 1999. In this table, the number of events indicated by PDSI is divided into two
categories: one with the same thresholds as 1950—1999 (previous threshold, PTH), and one
with the thresholds calculated based on PDSI from 2010-2099 (updated threshold, UTH).
As can been seen from the table, PDSI indicates many more drought events per year for all
the return periods if using the previous thresholds. With the updated threshold, the number
of drought events per year for each return period from 2010-2099 display no significant
different from that of 1950-1999. This indicate that the distribution of projected PDSI shift
towards lower end of the values. SRI also projects drought frequency to increase in the
future reaching the 30 and 40 year return period criteria, while the frequency decreases at the
10 and 20 year thresholds. SPI shows fewer droughts for 10, 20, and 30 return periods, but
the 40 year return period droughts increase to 0.44 event per year compared to 0.34 event per
year in the past. Therefore, drought in the Blue River Basin is projected to trend toward
fewer but more intense droughts in the future as indicated by the three indices.

Table 5 shows the historical and projected area affected by severe or extreme droughts
based on the basin division. Historically, the affected areas are almost equally distributed
among the upper, central and lower Blue River Basin. Both SPI and PDSI show that an
average of around 3 % of the area was affected by severe/extreme drought from 1950 to
1999; note that the lower region was slightly less affected than the upper and central regions.
In terms of projections, SPI shows that an average of 25.6 %, 22.9 % and 20.6 % of the
upper, central and lower Blue River Basin areas will be impacted by drought throughout the
21st century. Results from PDSI are displayed in two periods: almost no droughts are
projected for the first 40 years while the second half of the 21st century sees an average
0f 23.5 %, 23.5 %, 22.2 % of the areas affected by severe or extreme drought. Overall, both

Table 4 Number of drought events exceeding different return period thresholds for SPI, PDSI and SRI

1950-1999 # of events (# of events/year) 2010-2099 (A1B) # of events (# of events/year)

RP" SPI PDSI SRI SPI GISS PDSlpry"  PDSlyry~  SRI

10 years 140 (2.8) 57 (1.14) 73 (1.46) 114 (127) 323 (3.59) 107 (1.19) 122 (1.36)
20 years 83 (1.66) 26 (0.52) 38 (0.76) 66 (0.73) 265 (2.94)  47(0.52) 49 (0.54)
30 years 47 (0.94) 21 (0.42) 11 (0.22) 48 (0.53) 228 (2.53) 27 (0.3) 33 (0.37)

40 years 17 (0.34) 18 (0.36) 9 (0.18) 40 (0.44) 205 (227) 21(023)  19(0.21)

* RP stands for Return Period; PTH stands for Previous THreshold; UTH stands for Updated THreshold
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Table 5 Percent of area under severe/extreme droughts for upper, central and lower Blue River Basin

Blue River Basin ~ 1950-1999 2010-2099

SPI PDSI  SPI-GISS  PDSI(2010-2049)  PDSI(2050-2099)  PDSI (total)

Upper 35% 35% 25.6 % 0.5 % 235 % 133 %
Central 35% 28% 229 % 0.5 % 235 % 13.6 %
Lower 32% 27 % 20.6 % 0.83 % 222 % 12.8 %

SPI and PDSI project larger areas to be under severe or extreme droughts in the second half
of the 21 century.

3.4 Discussions

Several sources of uncertainty exist when projecting future drought. One major component
of uncertainty is the ability of GCMs to project future monthly precipitation. Even though
we selected the statistically best-matched GCM with the most accurate observational
baseline period to project droughts, future precipitation data is likely to vary somewhat
from the GCM projections. Another issue is that under increasing temperature, SPI is less
likely to correctly reflect future drought conditions under the ground since it, a meteorolog-
ical drought indicator, does not take ET and soil moisture into consideration. As the major
components in the hydrological cycle, ET and soil moisture can no longer be ignored in
drought projections when the climate is expected to continue to warm. . Although PDSI is
one of the most comprehensive drought indices used in the United States, it still has many
limitations when trying to project drought in a changing climate. Available Water Content
data from the current soil database, i.e. the STASTGO, are fixed values parallel to a
changing Earth surface. The third uncertainty comes from the runoff predictions obtained
via the Thornthwaite Monthly Water Balance Model, which might introduce some distor-
tions in SRI due to model errors. The problem is examined and discussed by Loukas et al.
(2008). Even though the model is well calibrated to minimize the errors, future predictions
still consist of uncertainties from various sources. Therefore, the magnitude of uncertainties
might be further aggregated after several levels of propagation. SRI seems to be the best
index that could depict both the past and future drought, and potentially has the most
agreements with SPI and PDSI as a whole. However, to understand and assess drought
conditions from the atmosphere and on the ground, the three indices are collectively
indispensable in order to come up with a comprehensive drought management plan.

4 Conclusions

This study analyzed the historical droughts of the Blue River Basin over the past 50 years and
projected possible future droughts over the next 90 years under the A1B scenario, a very likely
future climate in Southern US based on previous studies. Three types of drought indices (SPI,
PDSI and SRI) capture the major droughts documented in history. In terms of timing and
severity, SPI and SRI performed better and exhibited higher correlation with each other. The
results projected by SPI, PDSI and SRI under the business as usual A1B scenario suggest that
more drought events might occur in the second half of the 21* century. This could be caused by
the fact that the precipitation predicted by GISS-ER shows a descending trend, while the
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temperature is slowly but constantly increasing after 2010. Moreover, the ET projected by the
Thornthwaite Monthly Water Balance Model also has a significant increasing trend under such
a warming climate. In the projection period, PDSI and SRI perform similarly because they both
take into account the factors of soil moisture and ET. Collectively, the minimum values of the
three indices for the future Blue River Basin are lower than those ever recorded in the past
50 years. Therefore, it is very likely that future drought in the Blue River Basin will be more
severe and intense compared to the 1950—1999 period, especially for the second half of the 21st
century.

In this study, SRI appears to be a better indicator for the study basin because: (1) SRI
considers the changing climate which could play a rather significant role in future drought
management; (2) Compared to PDSI which also considers temperature change, SRI provides
drought information from a hydrological point of view, which is more applicable to water
resources managers and local farming business; and (3) SRI functioned well in this research
both for the past drought record reconstruction and for the future drought risk assessment
under a changing climate.

In summary, this study found that the three indices (i.e. SPI, PDSI and SRI) captured the
recorded droughts for the past 50 years and also suggested that more severe droughts are very
likely to occur in the next 90 years over the Blue River Basin. This study also found that SRI has
better agreements with the other two indices, with a high correlation coefficient (CC) of 0.81
(0.78) and 2-month (no appreciable) lag time from SPI (PDSI) over the 1950-2099 time period
across the basin. The former correlation between SRI and SPI indicates that hydrological
components (as indicated by SRI) respond slower to droughts than meteorological components
(as indicated by SPI), and the latent time for the Blue River Basin is approximately 2 months.
The latter correlation between SRI and PDSI indicate that the two drought indices respond to
droughts with equal reaction time, that is to say there is no appreciable time lag between the two
indicators. Although this study recommends that SRI is the more suitable indices to assess
future drought risks under an increasingly warmer climate because they take into account of ET
and soil moisture, more drought indices from ecological and socioeconomic perspectives
should be investigated and inter-compared to provide a more complete picture of drought risks
and its potential impacts on the nature-human coupled system.
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